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Abstract 
 

In fuzzy set, knowledge plays important roles in 
determining its membership function. By adding 
component of knowledge, this paper generalizes 
definition of fuzzy set based on probability theory. 
Some basic operations are re -defined. Granularity of 
knowledge is given in two frameworks, crisp 
granularity and fuzzy granularity. Objectivity and 
individuality mea- sure are proposed. Special 
attention is given to approximate reasoning in 
knowledge-based fuzzy sets representing fuzzy 
production rules as usually used in fuzzy expert 
system. 
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1. Introduction 
 

There are at least two types of uncertainty, namely 
deterministic uncertainty called fuzziness and 
non-deterministic uncertainty called randomness.  

In general, deterministic uncertainty may happen in 
the situation when one is subjectively able to determine 
or describe a given object, although somehow the object 
does not have a certain or clear definition. For example, 
a man describes a woman as a pretty woman. Obviously 
definition of a pretty woman is unclear, uncertain and 
subjective. The man however is convinced of what he 
describes as a pretty woman. 

On the contrary, in non-deterministic uncertainty, one 
cannot determine or describe a given object even though 
the object has clear definition because human does not 
know what happen in the future and has limited 
knowledge. In other words, human is not omniscient 
being.  

For example, in throwing a dice, even though there 
are six definable and certain possibilities of outcome, 
one however cannot assure the outcome of dice. Fuzzy 

set theory, proposed by Zadeh in 1965, is not to 
represent non deterministic situation of uncertainty such 
as randomness or stochastic process, but rather to 
represent deterministic uncertainty by a class or classes 
which do not possess sharply defined boundaries [11]. In 
deterministic uncertainty of fuzzy set, one may 
subjectively determine membership function of a given 
element by his knowledge. Different persons with 
different knowledge may provide different membership 
functions for elements in a universe with respect to a 
given fuzzy set. In other words, knowledge plays 
important roles in determining or defining a fuzzy set. 
Based on these reasons, we introduced knowledge-based 
representation of fuzzy set (knowledge-based fuzzy set, 
for short). Some basic concepts such as equality, 
containment, complementation, union and intersection 
are redefined [7]. In addition, by fuzzy conditional 
probability relation as proposed in [4,5] , granularity of 
knowledge is given in two frameworks, crisp granularity 
and fuzzy granularity. By assuming each element of 
knowledge corresponds to a person and fuzzy set 
corresponds to problem or situation, we construct two 
asymmetric similarity classes of knowledge representing 
the granularity of knowledge based on the conditional 
probability relation. Also, on the assumption that the 
more a given description is acceptable by others, the 
more objective the description is, we may define 
objectivity measure in knowledge-based fuzzy sets. On 
the other hand, individuality measure is defined as the 
opposite of objectivity measure. Special attention is 
given to approximate reasoning in knowledge-based 
fuzzy sets representing fuzzy production rules as usually 
used in fuzzy expert system. It is proved that inference 
rules, which are similar to Armstrong's Axioms [1] for 
the fuzzy production rules, are both sound and complete. 
 

2. Knowledge-based Fuzzy Set 
 

As a quotation from Albert Einstein said “So far as the 
laws of mathematics refer to reality, they are not certain. 
And so far as they are certain, they do not refer to 
reality.”, we actually live in an uncertain world. At least, 
there are two types of uncertainty, namely deterministic 
uncertainty and non-deterministic uncertainty. Fuzzy set 
theory proposed by Zadeh is considered as an example 
of deterministic uncertainty. In deterministic uncertainty 
of fuzzy set, one may subjectively determine 
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membership function of a given element by his 
knowledge. Different persons with different knowledge 
may provide different membership functions for 
elements in a universe with respect to a given fuzzy set. 
In other words, knowledge plays important roles in 
determining or defining a fuzzy set. In this section, a 
knowledge-based fuzzy sets is defined as follows. 
Definition1: Let { }nuuU ,...,1=  be a set of elements 

and { }mkkK ,...,1=  be a set of knowledge. Then a 
fuzzy set A  on U  based on element of knowledge 

ik  denoted by )(Ak i  is defined a mapping from U to 
the closed interval [0,1] which is characterized by a 
membership function 

]1,0[:)( →µ UAki
 

We may then represent a given fuzzy set A  on U  in 
a fuzzy information table as shown in Table 1 in which 

{ })(),...,()( 1 AkAkAK m=  is set of knowledge-based 
fuzzy sets of A . 
 

Table 1. Knowledge-based Fuzzy Set of A  
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µ  means membership function of element iu  

in fuzzy set A  based on element of knowledge jk . An 

aggregation function [3,9] )( f  may be applied in order 
to give a summary of all fuzzy sets. Formally, 
aggregation function on m  fuzzy sets )2( ≥m  is 
defined by 

[ ] [ ].1,01,0: →mf  
When applied to the knowledge-based fuzzy sets as 
shown in Table I, function f  produces a summary 
fuzzy set )( AS  by operating on the membership 
functions of all knowledge-based fuzzy sets for each 

Uu ∈  as follows:  
)).(),...,(()( )()()( 1

uufu AkAkAS m
µµ=µ  

Here, depending on type of application, f  might be 
defined by minimum, maximum, average, etc, in which 
f  must satisfy, 

),,...,max(),...,(),...,min( 111 mmm xxxxfxx ≤≤ for 

[ ] .,1,0 mj Njx ∈∈  
By assuming that each elements of knowledge represents 
an opinion toward a given fuzzy set, we may need to 

consider other aggregation function such as, 
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where ja  be a coefficient corresponding to jk , 
+∈ Ra j  and [ ]1,0∈jx . Larger value of ja  denotes 

that jk  is more prominent in determining the summary 
fuzzy set. 

There are several concepts relating to the 
knowledge-based fuzzy sets; for two fuzzy sets, 

)(, UFBA ∈  on a set of elements U , where )(UF  is 
fuzzy power set of U  and K  is a set of knowledge,  
Equality:  
(e1) 

,),()()()( )()( UuuuBkAk BkAkii ji
∈∀µ=µ⇔=  

(e2) 
,,),()( )()( KkUuuuBA BkAk ∈∀∈∀µ=µ⇔=  

(e3) 
,,,),()( )()( KkkUuuuBA jiBkAk ji

∈∀∈∀µ=µ⇔≡
(e4) 

),(,),()( )()( UFAUuuukk AkAkji ji
∈∀∈∀µ=µ⇔=

(e5) 
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u Aku Akji ji
∈∀µ=µ⇔ ∑∑

Containment: 
(c1) 

,),()()()( )()( UuuuBkAk AkAkji ji
∈∀µ=µ⇔⊂  

(c2) 
,,),()( )()( KkUuuuBA BkAk ∈∀∈∀µ≤µ⇔⊂  

(c3) 
A B ,,,),()( )()( KkkUuuu jiBkAk ji

∈∀∈∀≤⇔ µµ  

(c4) 
),(,),()( )()( UFAUuuukk AkAkji ji

∈∀∈∀µ≤µ⇔p
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Union: 
(u1) )],(),(max[)( )()()( uuu BkAkBAk jjj

µµ=µ ∪  

(u2) )].(),(max[)( )()( uuu BSASBA µµ=µ ∪  

(u3) )],(),(max[)( )()()()( uuu BkAkBkAk jiji
µµ=µ ∪  

(u4) )].(),(max[)( )()()( uuu AkAkAkk jiji
µµ=µ ∨  

 
 
 
 



Table 2. Knowledge-Based Fuzzy Set of Warm 
)(WK  Co20  Co22  Co24  Co26  Co28  Co30  Co32  Co34  Co36  Co38  Co40  
)(1 Wk  0 0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 

)(2 Wk  0 0 0.3 0.6 1.0 0.6 0.3 0 0 0 0 

)(3 Wk  0.4 0.8 1.0 1.0 0.8 0.4 0 0 0 0 0 

)(4 Wk  0 0 0 0 0.5 1.0 1.0 0.5 0 0 0 

)(5 Wk  0.2 0.5 1.0 0.5 0.2 0 0 0 0 0 0 

)(6 Wk  0 0 0 0.6 1.0 1.0 0.6 0 0 0 0 
 
Intersection: 
(j1) )],(),(min[)( )()()( uuu BkAkBAk jjj

µµ=µ ∩  

(j2) )],(),(min[)( )()()( uuu BfAfBA µµ=µ ∩  

(j3) )],(),(min[)( )()()()( uuu BkAkBkAk jiji
µµ=µ ∩  

(j4) )].(),(min[)( )()()( uuu AkAkAkk jiji
µµ=µ ∧  

Note: related to union and intersection, we may consider 
an aggregation operation (*) as defined by:  

)).(),(()( )()()()( uufu AkAkAkAk jiji
µµ=µ ∗  

Complementation: 
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From (n1) and (n2), we can get the following 
complementation: 
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3. Granularity of Knowledge 

 
Granularity of knowledge is proposed with intent to 

provide similarity classes of knowledge. In [4,5], fuzzy 
conditional probability relation was introduced as a more 
realistic relation in providing similarity between two 
elements or objects. Also in [5,6] , two asymmetric 
similarity classes were introduced induced by fuzzy 
conditional probability relation. Corresponding to these 
two asymmetric similarity classes, we also propose two 
asymmetric similarity classes of knowledge. The 
concept of fuzzy conditional probability relations starts 
from definition of an interesting mathematical relation, 

weak fuzzy similarity relation as defined in the 
following definition. 
Definition 2: A weak fuzzy similarity relation is a 
mapping, [ ]1,0)()(: →× UFUFs , such that for  

),(,, UFZYX ∈  
1. Reflexivity: ,1),( =XXs  
2. Conditional symmetry:  
  if 0),( 〉YXs  then 0),( 〉XYs  
3. Conditional transitivity: 
If 0),(),( 〉≥ XYsYXs  and 0),(),( 〉≥ YZsZYs  
then ),,(),( XZsZXs ≥  
where U  is an ordinary set of elements and )(UF  is 
fuzzy power sets of U . 
Definition 3: A fuzzy conditional probability relation is 
a mapping, ],1,0[)()(: →× UFUFR  such that for 

),(, UFYX ∈  
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where ),( YXR  means the degree Y  supports X  or 

the degree Y  is similar to X  and ∑ ∈ µ= Uu Y dY )(  
is regarded as cardinality of Y . 

By definitions, a fuzzy conditional probability relation 
is considered as a concrete example of weak fuzzy 
similarity relations. In the definition of fuzzy conditional 
probability relation, the conditional probability of fuzzy 
sets (fuzzy events) is simply the relative cardinality 
expression by assuming that all the elements have 
equally probability or uniform probability distribution. 
We may consider fuzzy sets X  and Y  on nEU =  
(Euclidean n-space) which is characterized by 
membership function ),...,( 1 nX eeµ  and ),...,( 1 nY eeµ , 

respectively with ),...,( 1 neeu = . Fuzzy conditional 

probability relation of fuzzy sets on nE  is given by 
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Generally, fuzzy information table can be used to 
represent fuzzy sets. We however need fuzzy 
information (n+1)-dimensional table for representing 
fuzzy sets on nE . Here, X  and Y  might be 
assumed as knowledge-based fuzzy sets in which each 
knowledge-based fuzzy set is regarded as fuzzy subset of 
elements in U . Furthermore, degree of similarity 
between two elements of knowledge, Kkk ji ∈, , in 
dealing a given fuzzy set A  is provided by fuzzy 
conditional probability relation as shown in the 
following definition.  

)),(),((),( AkAkRkkS jijiA =  

where )()(),( AKAkAk ji ∈  are two knowledge-based 

fuzzy sets on U  in dealing a given fuzzy set A . 
R  is fuzzy conditional probability relation. In this 
case, ),( jiA kkS  means degree of jk  is similar to ik  

in dealing a fuzzy label A  in which ),( jiA kkS  and 

),( ijA kkS  might have different values. For example, 
given a fuzzy information table of Warm (W) on degree 
Celsius as shown in Table 2. Degree of similarity 
between two elements knowledge, 4k  and 6k  for 
instance, can be calculated by 
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It can be easily verified that degree of similarity 
between two elements of knowledge satisfies some 
properties such as for A  is a given fuzzy set on U  
and Kkkk lji ∈,,  in which K  is set of knowledge, 

(r1) ,)](,1),(),([ jiijAjiA kkUFAkkSkkS =⇔∈∀==  
(r2) 

,)](,1),(,1),([ ijijAjiA kkUFAkkSkkS p⇔∈∀〈=  

(r3) ,~)](,0),(),([ jiijAjiA kkUFAkkSkkS ⇒∈∀〉=  

(r4) ,)](),,(),([
~ jiijAjiA kkUFAkkSkkS p⇒∈∀〈  

(r5) ,0),(0),( 〉⇔〉 jiAijA kkSkkS  
(r6) 

),(),(]0),(),(,0),(),([ ilAliAjlAljAijAjiA kkSkkSkkSkkSkkSkkS ≥⇒〉≥〉≥

(r1) shows reflexive property in knowledge. In (r2), ik  

covers jk  or jk  contains in ik . As shown in (r3), ik  

and jk  are the same tolerant (persons) in which we 

may consider cardinality of knowledge-based fuzzy set 
calculated by sum of membership function (see (e5) and 
(c5)) as measure of tolerance. On the other hand, jk  is 

more tolerant than ik  in (r4). Conditional symmetry 
and conditional transitivity are given in (r5) and (r6), 
respectively.  
Based on degree of similarity between two elements of 
knowledge, we define two kinds of similarity classes of 
a given element of knowledge ik . 
Definition 4: Let K  be a non-empty universe of 
knowledge, and AS  be degree of similarity between 
elements of knowledge in dealing a given fuzzy set A  
on a set of element U . For any element of knowledge 

)(, iAi kSKk α∈ and )( iA kαρ  are defined as the set of 

knowledge that supports ik  and the set supported by 

ik , respectively by: 

{ }
{ },),()(
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where ].1,0[∈α   

)( iA kS α  can also be interpreted as the set of knowledge 

that is similar to ik . On the other hand, )( iA kαρ  can be 

considered as the set of knowledge to which ik  is 

similar. Here, )( iA kS α  and )( iA kαρ  are regarded as 
two different semantic interpretation of similarity classes 
in providing crisp granularity of knowledge. It can be 
proved that similarity class of knowledge satisfies some 
properties such as, if ji kk

~
p  then )()( jAiA kSkS αα ⊆ , 

if BA ⊆  then )()( kSkS BA
αα ⊆  and if 

Kkkkk jiji ∈∀ ,,~  then ),()( kkS AA
αα ρ=  

).(, UFAKk ∈∀∈∀  For two similarity classes of 

knowledge, )( iA kS α  and )( jA kSα , the complement, 
intersection and union are defined by: 

{ }
{ }
{ }.)()()()(

,)()()()(
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Similarly, the complement, intersection and union can be 

defined for two similarity classes, )( iA kαρ  and )( jA kαρ .  
Obviously, the similarity classes of knowledge satisfy 
Boolean lattice, for the subsets are crisp sets. By the 
reflexivity, it follows that we can construct two crisp 
coverings of the universal set of knowledge, 



{ }KkkSA ∈α )(  and { }KkkA ∈ρα )( . One may use these 
coverings of the universe to represent a generalization of 
rough sets as proposed in [5,6]. We can also withdraw 

cut−α  or level−α  set from Definition 4 with intent 
to provide a more generalization of similarity class. In 
this case, each similarity class is regarded as a 
fuzzy-granule as defined by 

,),,()(
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where )()( k
iA kSµ  and )()( k

iA kρµ  are grades of 

membership of k  in )( iA kS  and )( iA kρ , 
respectively.  

Similarly, )(kSA  and )(kAρ  are regarded as fuzzy 
granularity of knowledge. Also, it can be proved that 
similarity class of knowledge satisfies some properties 
such as, if ji kk p  then )()( jAiA kSkS ⊆ , if BA ⊆  

then )()( kSkS BA ⊆  and if Kkkkk jiji ∈∀ ,,~  

then )()( kkS AA ρ= , )(, UFAKk ∈∀∈∀ . For two 

similarity classes of knowledge, )( iA kS  and )( jA kS , 
the complement, intersection and union are defined by: 

),(1)( )()( kk
iAiA kSkS −− µ−=µ  

)),(),(min()( )()()()( kkk
jAiAjAiA kSkSkSkS µ=µ ∩  

))(),(max()( )()()()( kkk
jAiAjAiA kSkSkSkS µ=µ ∪ . 

Similarly, the complement, intersection and union can 
be defined for two similarity classes, )( iA kρ  and 

)( jA kρ . For similarity classes of knowledge in terms of 
fuzzy granularity are fuzzy sets, obviously some 
properties of Boolean lattice are not satisfied such as 
Law of contradiction and Law of excluded middle. Also, 
two different fuzzy coverings of the universal set of 
knowledge are given by { }KkkSA ∈)(  and 

{ }KkkA ∈ρ )(  in which fuzzy granularity is a 
generalization of crisp granularity, implying that fuzzy 
covering is a generalization of crisp covering. Crisp and 
fuzzy granularity of knowledge play important role in 
representing classes (groups) of elements of knowledge 
(persons) who have similarities in dealing a given 
problem (situation), which is represented by a given 
fuzzy set.  
Example  1: Given fuzzy information table of Warm (W) 
in Table 2. Two asymmetric similarity classes of 4k  
and 6k  are given by: 
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Two asymmetric similarity classes of 4k  and 6k  in 
fuzzy granularity are given by: 
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4. Objectivity and Individuality Measure  

 
Generally, we may said that someone describes a 

given object objectively, if and only if his description is 
able to be accepted by all (persons). Actually, when we 
think of human being as personal being, then there are 
not objective description instead all description are 
subjective in the beginning. Therefore, standardization 
of definition has been made in order to avoid 
misunderstanding in communication such as quantitative 
measure in physics (measure of length, weight, time, 
energy, etc), regular shape of curves in geometry (line, 
circle, triangle, rectangle, etc), and so on. However, 
there is still a vast number of objects (anything) which 
cannot be defined objectively and acceptably by all 
(persons). Simply, on the assumption that the more a 
given description is acceptable by others, the more 
objective the description is, in this section, we define 
objectivity measure in knowledge-based fuzzy sets. First, 
objectivity measure is defined in terms of crisp 
granularity of knowledge as follows. 
Definition 5: Let K  be a non-empty universe of 

knowledge, and )( iA kαρ  is set of knowledge that is 

supported by ik . )( iA kαϕ  is defined as degree of 

objectivity ik  in dealing fuzzy label A in the degree of 
similarity α  by: 

,
)(

)(
K

k
k

iA
iA

α
α

ρ
=ϕ  

where ]1,0[∈α .    
On the other hand, we may define individuality measure 



as the opposite of objectivity measure by the following 
definition. 
Definition 6: Let K be a non-empty universe of 

knowledge, and )( iA kαρ  is set of knowledge that is 

supported by ik . )( iA kαϑ  is defined as degree of 

individua lity ik  in dealing fuzzy label A in the degree 
of similarity α  by: 

,
1)(

)(
K

kK
k

iA
iA

+ρ−
=ϑ

α
α  

where ]1,0[∈α .    

Obviously, relation between )( iA kαϕ  and )( iA kαϑ  is 
given by: 

(a) ,1,...,
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∈ϑϕ αα
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(b) .
1

)(1)(
K

kk iAiA +ϑ−=ϕ αα  

(a) shows that minimum degrees of objectivity and 

individuality are 
K
1 . By the reflexivity, it is obviously 

proved that at least there is an element of knowledge, 

ik  itself, who is perfectly supported by ik . Even if all 

elements of K are supported by ik , it does not mean 

that individuality of ik  become extinct. Here, degree of 
objectivity will be greater when there are more elements 
of knowledge, which are supported by ik . On the other 

hand, degree of individuality will be greater when ik  is 

more unique. Obviously, )( iA kαϕ  and )( iA kαϑ  are 
equal to 1 if and only if there is only one element in set 
of knowledge. In addition, degrees of objectivity and 
individuality rely on discrete value as a result of using 
crisp granularity. (b) shows a simple equation 
representing relation between )( iA kαϕ  and )( iA kαϑ . It 

can be verified that )( iA kαϕ  and )( iA kαϑ  satisfy some 
properties such as: 

(i) ,,
1

)(,1)( 11 Kkkk
K

kk iiAiA ∈∀⇔=ϑ=ϕ p  

(ii) ,,
1

)(,1)( 00 Kk
K

kk AA ∈∀=ϑ=ϕ  

(iii) 
.

),()(),()( 2121
21
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kkkk AAAA
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ϑ≤ϑϕ≥ϕ⇔α≤α αααα
 

From the set of K, we have a family of values 

{ }KkkA ∈ϕα )( . To generalize all degrees of objectivity, 

we may consider the following three definitions: 

(Minimum) { },)(min)( KkkKm AA ∈= αα ϕϕ  

(Maximum) { },)(max)( KkkKM AA ∈= αα ϕϕ  

(Average) { }KkkavgK AA ∈= )()(* αα ϕϕ  
In the same manner, from a family of value 

{ }KkkA ∈ϑα )( , we generalize all degrees of 
individuality by: 

(Minimum) { },)(min)( KkkKm AA ∈= αα ϑϑ  

(Maximum) { },)(max)( KkkKM AA ∈= αα ϑϑ  

(Average) { }KkkavgK AA ∈=∗ )()( αα ϑϑ . 
By definition we can obtain some conclusions such as: 

1)(1)( =ϕ∗⇔=ϕ αα KKm AA  means that objectivity of 
A  is totality in degree of similarity α . Oppositely, 

K
K

K
KM AA

1
)(

1
)( =ϕ∗⇔=ϕ αα  means that objectivity 

of A  is solitude in degree of similarity α . In the same 

manner, we also have 
K

KKm AA
1

)(1)( =ϑ∗⇔=ϑ αα  

and 
K

K
K

KM AA
1

)(
1

)( =ϑ∗⇔=ϑ αα  in terms of 

individuality of A . Related to the relation between 

)( iA kαϕ  and )( iA kαϑ  in (b), we have 

K
KK AA

1
)(1)( +ϑ∗−=ϕ∗ αα . 

Objectivity and individuality measure might be also 
defined in terms of fuzzy granularity of knowledge as 
shown in the following definition. 
Definition 7: Let K be a non-empty universe of 
knowledge, and )( iA kρ  is fuzzy set of knowledge that 

is supported by ik . )( iA kϕ  and )( iA kϑ  are defined 

as degree of objectivity and individuality of ik , 
respectively, in dealing fuzzy label A as given by: 
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Also, relation between )( iA kϕ  and )( iA kϑ  is given 
by: 

(a) ],1,
1

[)(),(
K

kk iAiA ∈ϑϕ  



(b) .
1

)(1)(
K

kk iAiA +ϑ−=ϕ  

Contrary to crisp granularity, in fuzzy granularity, 
degrees of objectivity and individuality rely on 
continuous value. It can be verified that )( iA kϕ  and 

)( iA kϑ  satisfy 

.,
1

)(,1)( Kkkk
K

kk iiAiA ∈∀⇔=ϑ=ϕ p  

Similarly, from the set of K, we have two families of 
values { }KkkA ∈ϕ )(  and { }KkkA ∈ϑ )( . Also, 
minimum, maximum and average functions can be used 
to generalize degrees of objectivity and individuality in 
the presence of fuzzy granularity of knowledge. 

Related to Example 1, degrees of objectivity and 
individuality of 4k  and 6k  in terms of crisp 
granularity are given by: 
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Degrees of objectivity and individuality of 4k  and 6k  
in terms of fuzzy granularity are given by: 

,
6
3.3

)(,
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5.5
)( 44 =ϑ=ϕ kk WW  

.
6
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9.5
)( 46 =ϑ=ϕ kk WW  

 
5. Approximate Reasoning 

 
Consider two persons, ik  and jk  for instance, 

argue about their different conclusions of a given 
premise. Let fuzzy label of A be a given premise and 
fuzzy label of B be the conclusion. We may represent 
relation between A and B by fuzzy production rules [9]  
which connect problems with solutions, antecedents with 
consequences, or premises with conclusions, as usually 
used in representing knowledge in fuzzy expert system. 
Generally, fuzzy production rules have the form as 
follows: 

If A, then B, 

where A,B are fuzzy sets. 
Related to the knowledge-based fuzzy sets, conclusions 
of ik  and jk  are )(Bki  and )(Bk j  in which 

)()( BkBk ji ≠ . Our problem is to determine which one 

has the right conclusion - ik  or jk . Sometimes, 
different views or understanding of the given premise 
are the cause of different conclusions. Here, we may 

summarize their relations into four possibilities: 
1. )()(),()( BkBkAkAk jiji == , there is no problem 

because both ik  and jk  are exactly the same in 
understanding the given premise and giving the 
conclusion.  
2. )()(),()( BkBkAkAk jiji ≠= , both ik  and jk  
have the same understanding of the given premise, but 
they have different conclusions; that is the problem.  
3. )()(),()( BkBkAkAk jiji =≠ , because both ik  and 

jk  have different understanding of the premise even 
though they have the same conclusion, their conclusions 
should be treated independently.  
4. )()(),()( BkBkAkAk jiji ≠≠ , with the same as point 
3, their conclusions are independent so that their 
different conclusions are able to be understood and 
tolerated. 
From the four possibilities, we have a problem in point 2. 
Fairly, ik  and jk  have the same degree of correctness; 
let say 0.5 in probability measure. By granularity of 
knowledge as proposed in the previous section, degree 
of correctness of approximate reasoning in fuzzy 
production rule by certain knowledge (person) can be 
approximately calculated as follows.  
Definition 8: Let K be a non-empty universe of 
knowledge, and )(),( kSkS BA

αα  be crisp granularity of 
knowledge of Kk ∈  in dealing fuzzy label A and fuzzy 

label B, respectively. )( BA k→δα  is defined as 
degree of correctness of approximate reasoning k  in 
representing conclusion of B as given premise of A by 

,
)(

)()(
)(

kS

kSkS
BA

A

BAk
α

αα

α

∩
=→δ  

where [ ]1,0∈α  and |.| be a cardinality of set.    
From the set of K, we have a family of values 

{ }KkBA k ∈→δα )( . To generalize all degrees of 
correctness, we may consider the following three 
definitions: 
Minimum: { },)(min)( KkBABA kkm ∈→=→ αα δδ  

Maximum: { },)(max)( KkBABA kkM ∈→=→ αα δδ  

Average: { }.)()( KkBAavgBA kk ∈→=→∗
αα δδ  

By definition we can obtain some properties such as: 
if connection between premise A and conclusion B is 

totally correct then )()( kSkS BA
αα ⊆  for all Kk ∈ . It 

also means that the similarity classes of knowledge in 
dealing fuzzy label A is finer than the similarity classes 
of knowledge in dealing fuzzy label B. 



1)(1)( =→δ⇔=→δ ∗
αα BABA kkm , similarly  

1)(1)( 〈→δ⇔〈→δ ∗
αα BABA kkm . If 

1)( =→δ∗
α BA k  then we say that B is general 

conclusion as given premise A, otherwise if 

1)( 〈→δ∗
α BA k , we say that B is partial conclusion (in 

a degree )( BA km →δα ) as given premise A. Likewise, 

if 1)( =→δα BA k  we say that B is general 
conclusion as given premise A in an element of 

knowledge Kk ∈ , otherwise if 1)( 〈→δα BA k , we 
say that B is partial conclusion (in a degree 

)( BA k→δα ) as given premise A in element of 
knowledge k . 

Degree of correctness in Definition 5 may also be 
generalized and calculated by fuzzy granularity of 
knowledge as defined by: 
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where intersection is defined as minimum and 
cardinality is provided by sum of membership function. 

Similarly, )(),( BABA KMKm →δ→δ  and 

)( BA K→δ∗  may also be defined to generalize all 
degrees of correctness. 

Also, it depends on the application in which for 
example all of us agree that there is a causal relationship 
between A and B. However the relationship might be 
unclear in determining which one is premise and which 
one is conclusion.  
For example, let { }321 ,, kkkK =  be set of knowledge. 
Interpretation of fuzzy labels A and B based on K is 
arbitrarily given in the following figure. 
 

 
Figure 1. ? 

 
Obviously, the figure shows that all elements of K 

have almost the same interpretation of B, but they have 
different interpretation of A. If we consider B as premise 
and A as conclusion, a problem arises in determining 
what interpretation of A should be used as conclusion in 
the case of almost the same interpretation of B. On the 
other hand, if we consider A as premise and B as 
conclusion, no matter in the beginning they have 
different interpretation of A as premise, finally they will 

have the same conclusion (in α  level set). Therefore, 
we should consider A as premise and B as conclusion in 
the given example. In this case, by the granularity of 
knowledge, we are able to determine which one should 
be a premise and which one should be a conclusion in 
the causal relationship between A and B. Here, similarity 
classes of knowledge in dealing premise should be finer 
than similarity classes of knowledge in dealing 
conclusion. Fuzzy production rule represents A as 
premise and B as conclusion (A determines B, for short) 
in element of knowledge Kk ∈  defined by: 

(a) ,1)()( =→δ〈→δ⇔→ αα BAABBA kkk  (A 
strongly determines B) 

(b)  (A weakly 
determines B) 

(c) ,1)()( =→δ=→δ⇔→← αα ABBABA kkk  
(A strongly equals B)  

(d)  (A 
weakly equals B) 

where K is set of knowledge. )( BA k→δα and 

)( AB k→δα  can be generalized and changed to 

)( BA k→δ  and )( AB k→δ , respectively. It is also 
necessary to consider and define some sets of fuzzy 
production rules which are subsets of K as defined by 

(i) ,




 →∈=

→
BAKkK kBA

 (set of A strongly 

determines B) 

(ii)  (set of A weakly 
determines B) 

(iii) ,




 →←∈=

↔
BAKkK kBA

 (set of A strongly 

determines B) 

(iv)  (set of A weakly 
equals B) 
where they are satisfied: 

where 

,
BA

K
→

,
BA

K
↔

,
AB

K
→

 and  are disjoint 
subsets of K. In order to generalize fuzzy production 
rules, we need to calculate cardinality of the sets of 
fuzzy production rule, A determines B, by 

 
Similarly, we have 



, where |.| means cardinality of set.  is not 
included in calculating cardinality of set of A determines 
B with intent to deal BA ↔  as a special condition. 
Simply, coefficients of cardinality of sets are given with 
intervals of 0.25 because there are four sets of fuzzy 
production rules that involve in the calculation. We then 
define fuzzy production rules in K as follows.  
 
(Rule 1) ,)( KBACBA =→⇔→  
(Rule 2) ,0)()( =→=→⇔↔ ABCBACBA  
(Rule 3)  

(Rule 4)  
 
where |.|s is cardinality of set. It can be also said that 

KKBA
BA

=⇔→
→

 and KKBA
BA

=⇔↔
↔

. It can 
be proved that the fuzzy production rules satisfies 
Armstrong's Axioms [1], such that for A,B,C are fuzzy 
Reflexivity: ),(,, UFBABABA ∈→⇒⊆  
Augmentation: ),(,,)( UFCABCABA ∈→∩⇒→  
Transitivity: ( BA →  and .) CACB →⇒→  

 
6. Conclusions 

 
We proposed knowledge-based representation of 

fuzzy sets. Aggregation function was used to provide a 
summary fuzzy set. Some basic concepts and operations 
such as equality, containment, union, intersection and 
complementation were defined in terms of 
knowledge-based fuzzy sets. Granularity of knowledge 
was proposed in two frameworks, crisp granularity and 
fuzzy granularity, in order to provide two asymmetric 
similarity classes of knowledge in dealing a fuzzy set 
representing a problem. On the assumption that the more 
a given description is acceptable by others, the more 
objective the description is, we defined objectivity 
measure in knowledge-based fuzzy sets. Contrary to 
objectivity measure, we also proposed individuality 
measure. Special attention was given to approximate 
reasoning of knowledge-based fuzzy sets in representing 
fuzzy production rules. Inference rules, which are 
similar to Armstrong's Axioms for the fuzzy production 
rules, are both sound and complete. 
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